Jump to content

Scientists Achieve Time-Reversal Symmetry With Kagome Superconductor


Recommended Posts

  • Author

Scientists Achieve Time-Reversal Symmetry With Kagome Superconductor

Scientists Achieve Time-Reversal Symmetry With Kagome Superconductor

A team at the Paul Scherrer Institute (PSI) in Switzerland has achieved a breakthrough with a Kagome superconductor (RbV3Sb5) that demonstrates time-reversal symmetry (TRS) breaking at a temperature of 175 Kelvin (-98°C or -144.67 °F). This record temperature suggests promising developments in quantum systems, which typically require ultra-low temperatures to prevent disruptions caused by thermal energy. Researchers believe the high-temperature TRS breaking in RbV3Sb5 can reduce energy needs for quantum technology, potentially accelerating its adoption.

Understanding Time-Reversal Symmetry in Quantum Technology

TRS implies that the fundamental laws remain the same when time flows backward in Physics. However, in materials like RbV3Sb5, TRS is broken, leading to unique quantum states that are challenging yet essential for developing advanced quantum devices. These unusual states result in the material behaving differently depending on the direction of time, an attribute that can be manipulated for enhanced control over quantum systems.

According to the study authors, this Kagome superconductor maintains superconductivity down to approximately two Kelvin but can sustain TRS-breaking quantum states at much higher temperatures, enhancing its suitability for real-world applications. PSI researchers, including Mahir Dzambegovic, highlighted the material’s charge order state, where electrons form an organised pattern, producing a magnetic effect that breaks TRS at -144.67 °F.

Implications for Future Quantum Systems

The discovery of TRS breaking at such temperatures presents significant implications for quantum computing and storage. The ability to maintain these effects at higher temperatures could make quantum technologies more feasible outside of laboratory settings, according to PSI’s team. Notably, the TRS-breaking properties of RbV3Sb5 are tunable, with effects varying based on the material’s depth, from surface to core.

Future studies are expected to further explore the tunability of Kagome superconductors, particularly focusing on the interplay between superconductivity and TRS-breaking effects in RbV3Sb5. The study, published in Nature Communications, marks a step toward achieving practical quantum devices capable of operating in more energy-efficient conditions.

 

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.



Indian Researchers Develop Energy-Efficient Method to Create Glass, Could Improve Efficiency of Data Centres


Realme 14 Pro Lite Said to Be in the Works, Colour Options, RAM and Storage Configurations Tipped






Source link

#Scientists #Achieve #TimeReversal #Symmetry #Kagome #Superconductor

📬Pelican News

Source Link

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...

Important Information

Cookie Consent & Terms We use cookies to enhance your experience on our site. By continuing to browse our website, you agree to our use of cookies as outlined in our We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.. Please review our Terms of Use, Privacy Policy, and Guidelines for more information.